机器视觉光源pcb检测(pcb板视觉检测)

机器视觉光源检测 siaote 2023-03-16 16:06 656 3
视觉光源定制

本文目录一览:

机器视觉中所用到的同轴光源和其它光源的优缺点,以及使用方法

1、同轴光源

同轴光源可以消除物体表面不平整引起的阴影,从而减少干扰;部分采用分光镜设计,减少光损失,提高成像清晰度,均匀照射物体表面。应用领域:系列光源最适宜用于反射度极高的物体,如金属、玻璃、胶片、晶片等表面的划伤检测,芯片和硅晶片的破损检测,Mark点定位,包装条码识别。

2、背光源

用高密度LED阵列面提供高强度背光照明,能突出物体的外形轮廓特征,尤其适合作为显微镜的载物台。红白两用背光源、红蓝多用背光源,能调配出不同颜色,满足不同被测物多色要求。应用领域:机械零件尺寸的测量,电子元件、IC的外型检测,胶片污点检测,透明物体划痕检测等。

3、条形光源

条形光源是较大方形结构被测物的首选光源;颜色可根据需求搭配,自由组合;照射角度与安装随意可调。应用领域:金属表面检查,图像扫描,表面裂缝检测,LCD面板检测等。

4、环形光源

环形光源提供不同照射角度、不同颜色组合,更能突出物体的三维信息;高密度LED阵列,高亮度;多种紧凑设计,节省安装空间;解决对角照射阴影问题;可选配漫射板导光,光线均匀扩散。应用领域:PCB基板检测,IC元件检测,显微镜照明,液晶校正,塑胶容器检测,集成电路印字检查

5、AOI专用光源

不同角度的三色光照明,照射凸显焊锡三维信息;外加漫射板导光,减少反光;不同角度组合;应用领域:用于电路板焊锡检测。

6、球积分光源

具有积分效果的半球面内壁,均匀反射从底部360度发射出的光线,使整个图像的照度十分均匀。应用领域:合于曲面,表面凹凸,弧形表面检测,或金属、玻璃表面反光较强的物体表面检测。

7、线形光源

超高亮度,采用柱面透镜聚光,适用于各种流水线连续检测场合。应用领域:阵相机照明专用,AOI专用。

8、点光源

大功率LED,体积小,发光强度高;光纤卤素灯的替代品,尤其适合作为镜头的同轴光源等;高效散热装置,大大提高光源的使用寿命。应用领域:适合远心镜头使用,用于芯片检测,Mark点定位,晶片及液晶玻璃底基校正。

9、组合条形光源

四边配置条形光,每边照明独立可控;可根据被测物要求调整所需照明角度,适用性广。应用案例:CB基板检测,IC元件检测,焊锡检查,Mark点定位,显微镜照明,包装条码照明,球形物体照明等。

10、对位光源

对位速度快;视场大;精度高;体积小,便于检测集成;亮度高,可选配辅助环形光源。应用领域:VA系列光源是全自动电路板印刷机对位的专用光源。

想了解更多机器视觉光源产品及相关内容可登录:网页链接

详细介绍机器视觉光源的特点和应用

1、环形光源

环形光源提供不同照射角度、不同颜色组合,更能突出物体的三维信息;高密度LED阵列,高亮度;多种紧凑设计,节省安装空间;解决对角照射阴影问题;可选配漫射板导光,光线均匀扩散。

应用领域:PCB基板检测,IC元件检测,显微镜照明,液晶校正,塑胶容器检测,集成电路印字检查

2、背光源

用高密度LED阵列面提供高强度背光照明,能突出物体的外形轮廓特征,尤其适合作为显微镜的载物台。红白两用背光源、红蓝多用背光源,能调配出不同颜色,满足不同被测物多色要求。

应用领域:机械零件尺寸的测量,电子元件、IC的外型检测,胶片污点检测,透明物体划痕检测等。

3、条形光源

条形光源是较大方形结构被测物的首选光源;颜色可根据需求搭配,自由组合;照射角度与安装随意可调。

应用领域:金属表面检查,图像扫描,表面裂缝检测,LCD面板检测等。

4、同轴光源

同轴光源可以消除物体表面不平整引起的阴影,从而减少干扰;部分采用分光镜设计,减少光损失,提高成像清晰度,均匀照射物体表面。

应用领域:系列光源最适宜用于反射度极高的物体,如金属、玻璃、胶片、晶片等表面的划伤检测,芯片和硅晶片的破损检测,Mark点定位,包装条码识别。

5、AOI专用光源

不同角度的三色光照明,照射凸显焊锡三维信息;外加漫射板导光,减少反光;不同角度组合;

应用领域:用于电路板焊锡检测。

6、球积分光源

具有积分效果的半球面内壁,均匀反射从底部360度发射出的光线,使整个图像的照度十分均匀。

应用领域:合于曲面,表面凹凸,弧形表面检测,或金属、玻璃表面反光较强的物体表面检测。

7、线形光源

超高亮度,采用柱面透镜聚光,适用于各种流水线连续检测场合。

应用领域:阵相机照明专用,AOI专用。

8、点光源

大功率LED,体积小,发光强度高;光纤卤素灯的替代品,尤其适合作为镜头的同轴光源等;高效散热装置,大大提高光源的使用寿命。

应用领域:适合远心镜头使用,用于芯片检测,Mark点定位,晶片及液晶玻璃底基校正。

9、组合条形光源

四边配置条形光,每边照明独立可控;可根据被测物要求调整所需照明角度,适用性广。

应用领域:CB基板检测,IC元件检测,焊锡检查,Mark点定位,显微镜照明,包装条码照明,球形物体照明等。

10、对位光源

对位速度快;视场大;精度高;体积小,便于检测集成;亮度高,可选配辅助环形光源。

应用领域:VA系列光源是全自动电路板印刷机对位的专用光源。

想了解更多机器视觉光源产品及相关内容可登录:网页链接

自动化流水线上机器视觉如何对PCB板进行在线综合检测

在现代电子产品世界中,印刷电路板(以下简称PCB)是集成各种电子元器件的信息载体,在电子领域中有着广泛的应用,其质量直接影响到产品的性能,很难想象在一台电子设备中有不采用PCB的,在PCB制造过程中,PCB上的元器件安装普遍采用表面贴片安装技术。随着电子 科技 技术的发展和电子制造业的发展,电子产品趋于更轻、更小、更薄化。所以PCB的质量如何将对电子产品能否长期正常可靠工作带来非常大的影响。提高PCB的质量是电子产品制造厂商应引起足够重视的重要课题。

接下来我们就来聊聊机器视觉在PCB上面的应用

首先PCB缺陷检测包括两部分:焊点缺陷检测和元器件检测,传统的检测采用人工检测方法,容易漏检、检测速度慢、检测时间长、成本高,已经逐渐不能够满足生产需要。因此,设计一种高效精准搭载工业相机以取代人眼的机器视觉PCB检测系统,具有非常重要的现实意义。

机器视觉检测技术是建立在图像处理算法的基础上,通过数字图像处理与模式识别的方法来实现,与传统的人工检测技术相比,提高了缺陷检测的效率和准确度。

为了有助于PCB的制造厂商在生产工艺实施的早期阶段能够发现所产生的缺陷,目前越来越多的筛网印刷设备制造厂商在他们所制造的筛网印刷设备中综合了在线机器视觉技术。

首先,它们能够在印刷操作实施以后直接发现所存在的缺陷情况,在主要的制造成本被添加上PCB以前,可以让操作者能及时处理有关的问题。该步骤一般包含在电路板从印刷装置上移下来的时候、在清洗剂中清冼好了以后、以及在返修好了返回生产线的时候。

在者,因为在该阶段发现了有关的缺陷,所以可以预防有缺陷的电路板送达生产线的后端。于是预防了返修现象或者在有些场合所形成的废弃现象。

也许是最重要的:能够给操作者以及时的反馈,使之明了正在操作中的印刷工艺操作是否良好,进而可以有效地防止缺陷的产生。

为了能够在这一层面的工艺操作过程中提供有效的控制,配置在线视觉系统能够检测焊膏涂覆好了以后的PCB上焊盘的情况,以及相应的印刷模板缝隙是否存在堵塞或者拖尾现象。绝大多数情况下,对微细间距的元器件进行检测是为了优化检测时间和集中于*容易产生问题的区域。为此,当消除了所可能产生的问题的时候,在检测方面所花费的这点时间还是值得的。

其次是焊膏的检测,具体可分为对PCB上焊膏的检测和对印刷模板上的焊膏检测二大类:

a. 对PCB的检测

主要检测印刷区域、印刷偏移和桥接现象。对印刷区域的检测是指在每个焊盘上面的焊膏面积。过量的焊膏可能会引发桥接现象的发生,而过小的焊膏也会引发焊接点不牢固的现象产生。对印刷偏移的检测是针对位于焊盘上的焊膏数量与规定的位置是否有不同。对桥接现象的检测是针对在相邻两个焊盘之间所施加的焊膏是否超过了规定的数量。这些多余的焊膏可能会引发电气短路现象。

b. 对印刷模板的检测

对印刷模板的检测主要为针对阻塞和拖尾现象的检测。对阻塞的检测是指检测在印刷模板上的孔中是否堆积了焊膏。如果孔被堵塞住了的话,那么在下一个印刷点上可能所施加的焊膏会显得太少。对拖尾的检测是指是否有过量的焊膏堆积在印刷模板的表面上。这些过量的焊膏可能会施加在电路板上不应导通的位置上面,从而引发电气连接问题。

在国外,机器视觉的应用普及主要体现在半导体及电子行业,其中大概40-50%都集中在半导体行业。具体如:PCB印刷电路:各类生产印刷电路板组装技术、设备;单、双面、多层线路板,覆铜板及所需的材料及辅料;辅助设施以及耗材、油墨、药水药剂、配件;电子封装技术与设备;丝网印刷设备及丝网周边材料等。

而在中国,视觉技术的应用开始于90年代,因为行业本身就属于新兴的领域,再加之机器视觉产品技术的普及不够,导致以上各行业的应用几乎空白。目前国内机器视觉大多为国外品牌。国内大多机器视觉公司基本上是靠代理国外各种机器视觉品牌起家,随着机器视觉的不断应用,公司规模慢慢做大,技术上已经逐渐成熟。

身为电气工程师的你懂机器视觉吗?为什么它这么厉害?

机器视觉是通过计算机来模拟人类视觉功能,以让机器获得相关视觉信息和加以理解。可分为“视”和“觉”两部分原理。

“视”是将外界信息通过成像来显示成数字信号反馈给计算机,需要依靠一整套的硬件解决方案,包括光源、相机、图像采集卡、视觉传感器等。“觉”则是计算机对数字信号进行处理和分析,主要是软件算法。

机器视觉在工业上应用领域广阔,核心功能包括:测量、检测、识别、定位等。

产业链可以分为上游部件级市场、中游系统集成/整机装备市场和下游应用市场。

机器视觉上游有光源、镜头、工业相机、图像采集卡、图像处理软件等软硬件提供商,中游有集成和整机设备提供商,行业下游应用较广,主要下游市场包括电子制造行业、 汽车 、印刷包装、烟草、农业、医药、纺织和交通等领域。

机器视觉全球市场主要分布在北美、欧洲、日本、中国等地区,根据统计数据,2014年,全球机器视觉系统及部件市场规模是 36.7 亿美元,2015年全球机器视觉系统及部件市场规模是42亿美元,2016年全球机器视觉系统及部件市场规模是62亿美元,2002-2016年市场年均复合增长率为12%左右。而机器视觉系统集成,根据北美市场数据估算,大约是视觉系统及部件市场的6倍。

中国机器视觉起步于80年代的技术引进,随着98年半导体工厂的整线引进,也带入机器视觉系统,06年以前国内机器视觉产品主要集中在外资制造企业,规模都较小,06年开始,工业机器视觉应用的客户群开始扩大到印刷、食品等检测领域,2011年市场开始高速增长,随着人工成本的增加和制造业的升级需求,加上计算机视觉技术的快速发展,越来越多机器视觉方案渗透到各领域,到2016年我国机器视觉市场规模已达近70亿元。

机器视觉中,缺陷检测功能,是机器视觉应用得最多的功能之一,主要检测产品表面的各种信息。在现代工业自动化生产中,连续大批量生产中每个制程都有一定的次品率,单独看虽然比率很小,但相乘后却成为企业难以提高良率的瓶颈,并且在经过完整制程后再剔除次品成本会高很多(例如,如果锡膏印刷工序存在定位偏差,且该问题直到芯片贴装后的在线测试才被发现,那么返修的成本将会是原成本的100倍以上),因此及时检测及次品剔除对质量控制和成本控制是非常重要的,也是制造业进一步升级的重要基石。

1.在检测行业,与人类视觉相比,机器视觉优势明显

1)精确度高:人类视觉是64灰度级,且对微小目标分辨力弱;机器视觉可显著提高灰度级,同时可观测微米级的目标;

2)速度快:人类是无法看清快速运动的目标的,机器快门时间则可达微秒级别;

3)稳定性高:机器视觉解决了人类一个非常严重的问题,不稳定,人工目检是劳动非常枯燥和辛苦的行业,无论你设计怎样的奖惩制度,都会发生比较高的漏检率。但是机器视觉检测设备则没有疲劳问题,没有情绪波动,只要是你在算法中写好的东西,每一次都会认真执行。在质控中大大提升效果可控性。

4)信息的集成与留存:机器视觉获得的信息量是全面且可追溯的,相关信息可以很方便的集成和留存。

2.机器视觉技术近年发展迅速

1)图像采集技术发展迅猛

CCD、CMOS等固件越来越成熟,图像敏感器件尺寸不断缩小,像元数量和数据率不断提高,分辨率和帧率的提升速度可以说日新月异,产品系列也越来越丰富,在增益、快门和信噪比等参数上不断优化,通过核心测试指标(MTF、畸变、信噪比、光源亮度、均匀性、色温、系统成像能力综合评估等)来对光源、镜头和相机进行综合选择,使得很多以前成像上的难点问题得以不断突破。

2)图像处理和模式识别发展迅速

图像处理上,随着图像高精度的边缘信息的提取,很多原本混合在背景噪声中难以直接检测的低对比度瑕疵开始得到分辨。

模式识别上,本身可以看作一个标记过程,在一定量度或观测的基础上,把待识模式划分到各自的模式中去。图像识别中运用得较多的主要是决策理论和结构方法。决策理论方法的基础是决策函数,利用它对模式向量进行分类识别,是以定时描述(如统计纹理)为基础的;结构方法的核心是将物体分解成了模式或模式基元,而不同的物体结构有不同的基元串(或称字符串),通过对未知物体利用给定的模式基元求出编码边界,得到字符串,再根据字符串判断它的属类。在特征生成上,很多新算法不断出现,包括基于小波、小波包、分形的特征,以及独二分量分析;还有关子支持向量机,变形模板匹配,线性以及非线性分类器的设计等都在不断延展。

3)深度学习带来的突破

传统的机器学习在特征提取上主要依靠人来分析和建立逻辑,而深度学习则通过多层感知机模拟大脑工作,构建深度神经网络(如卷积神经网络等)来学习简单特征、建立复杂特征、学习映射并输出,训练过程中所有层级都会被不断优化。在具体的应用上,例如自动ROI区域分割;标点定位(通过防真视觉可灵活检测未知瑕疵);从重噪声图像重检测无法描述或量化的瑕疵如橘皮瑕疵;分辨玻璃盖板检测中的真假瑕疵等。随着越来越多的基于深度学习的机器视觉软件推向市场(包括瑞士的vidi,韩国的SUALAB,香港的应科院等),深度学习给机器视觉的赋能会越来越明显。

4)3d视觉的发展

3D视觉还处于起步阶段,许多应用程序都在使用3D表面重构,包括导航、工业检测、逆向工程、测绘、物体识别、测量与分级等,但精度问题限制了3D视觉在很多场景的应用,目前工程上最先铺开的应用是物流里的标准件体积测量,相信未来这块潜力巨大。

3.要全面替代人工目检,机器视觉还有诸多难点有待攻破

1)光源与成像:机器视觉中优质的成像是第一步,由于不同材料物体表面反光、折射等问题都会影响被测物体特征的提取,因此光源与成像可以说是机器视觉检测要攻克的第一个难关。比如现在玻璃、反光表面的划痕检测等,很多时候问题都卡在不同缺陷的集成成像上。

2)重噪音中低对比度图像中的特征提取:在重噪音环境下,真假瑕疵的鉴别很多时候较难,这也是很多场景始终存在一定误检率的原因,但这块通过成像和边缘特征提取的快速发展,已经在不断取得各种突破。

3)对非预期缺陷的识别:在应用中,往往是给定一些具体的缺陷模式,使用机器视觉来识别它们到底有没有发生。但经常遇到的情况是,许多明显的缺陷,因为之前没有发生过,或者发生的模式过分多样,而被漏检。如果换做是人,虽然在操作流程文件中没让他去检测这个缺陷,但是他会注意到,从而有较大几率抓住它,而机器视觉在这点上的“智慧”目前还较难突破。

4.机器视觉产业链情况

1)上游部件级市场

主要包括光源、镜头、工业相机、图像采集卡、图像处理软件等提供商,近几年智能相机、工业相机、光源和板卡都保持了不低于20%的增速。根据中国机器视觉产业联盟(CMVU)调查统计,现在已进入中国的国际机器视觉品牌已近200多家(如康耐视、达尔萨、堡盟等为代表的核心部件制造商,以基恩士、欧姆龙、松下、邦纳、NI等为代表的则同时涉足机器视觉核心部件和系统集成),中国自有的机器视觉品牌也已有100多家(如海康、华睿、盟拓光电、神州视觉、深圳灿锐、上海方诚、上海波创电气等),机器视觉各类产品代理商超过300家(如深圳鸿富视觉、微视新纪元、三宝兴业、凌云光、阳光视觉等)。很多国内机器视觉的部件市场都是从代理国外品牌开始,很多企业均与国外的同行有较好的合作,且这种合作具有一定的排他性,这给潜在进入者带来了一定的门槛,因此优质产品的代理商也都有不错的市场竞争力和利润表现。同时,以海康、华睿为代表的国产工业视觉核心部件正在快速崛起。

2)中游系统集成和整机装备市场

国内中游的系统集成和整机装备商有100多家,他们可以给各行业自动化公司提供综合的机器视觉方案,如凌云光、微视新纪元、嘉恒、凌华、阳光视觉、鼎信、大恒图像等。由于国内产品与国际依然有不小差距,很多中游系统集成商和整机装备商又是从核心零部件的贸易做起来的,因此很多在视觉产品的选择方面,依然更为青睐国外品牌。国内品牌为推广自己的软硬件产品,往往需要发展自己的方案集成能力,才能更好的面对市场竞争。

3)下游应用市场

机器视觉下游,主要是给终端用户提供非标自动化综合解决方案的公司,行业属性非常强,核心竞争力是对行业和生产的综合理解和多类技术整合。由于行业自动化的更迭有一定周期性,深受行业整体升级速度、出货量和利润状况影响,因此近两年来看,拉动机器视觉应用普及最主要的还是在电子制造业,其次是 汽车 和制药。

i. 半导体和电子生产行业:从国内机器视觉工业上的应用分布来看,46%都集中在电子及半导体制造行业,包括晶圆加工制造的分类切割、PCB检测(底片、内/外层板、成品外观终检等)、SMT贴装检测、LCD全流程的AOI缺陷检测、各种3c组件的表面缺陷检测、3c产品外观检测等

ii. 汽车 :车身装配检测、零件的几何尺寸和误差测量、表面和内部缺陷检测、间隙检测等

iii. 印刷、包装检测:烟草外壳印刷、食品的包装和印刷、药品的铝塑板包装和印刷等

iv. 农业:对农产品的分级、检验和分类

v. 纺织:对异纤、云织、经疵、纬疵等瑕疵检测、织物表面绒毛鉴定、纱线结构分析等等。

5.机器视觉系统未来发展趋势

1)嵌入式解决方案发展迅猛,智能相机性能与成本优势突出,嵌入式PC会越来越强大

2)模块化的通用型软件平台和人工智能软件平台将降低开发人员技术要求和缩短开发周期

3)3d视觉将走向更多应用场景

评论区

精彩评论
  • 2023-03-30 02:07:41

    可选配辅助环形光源。应用领域:VA系列光源是全自动电路板印刷机对位的专用光源。想了解更多机器视觉光源产品及相关内容可登录:网页链接自动化流水线上机器视觉如何对PCB板进行在线综合检测在现代电子产品世界中,印刷电路板(以下简称PCB)是集成各种电子元器

  • 2023-03-30 02:22:09

    装置,大大提高光源的使用寿命。应用领域:适合远心镜头使用,用于芯片检测,Mark点定位,晶片及液晶玻璃底基校正。9、组合条形光源四边配置条形光,每边照明独立可控;可根据被测物要求调整所需照明角度,适用性广。应用案例:CB基板检测,IC元件检测,焊锡检查,Mark点定位,显微镜照明,包装条码照明,球形

  • 2023-03-30 00:27:55

    助于PCB的制造厂商在生产工艺实施的早期阶段能够发现所产生的缺陷,目前越来越多的筛网印刷设备制造厂商在他们所制造的筛网印刷设备中综合了在线机器视觉技术。 首先,它们能够在印刷操作实施以后直接发现所存在的缺陷情况,在主要的制