砀山机器视觉光源外壳定制

本文目录一览:
国产视觉系统哪个品牌比较好
国产视觉系统研祥金码品牌比较好。
视觉系统的主要构成,一般分为 5 大部分:照明、镜头、相机、图像采集卡、视觉处理器。随着国内对视觉系统需求的增加,国产品牌SSZN的视觉系统技术从2D到3D不断进步,设备在应用上不断推陈出新,精度越来越高。
一维码/二维码是按照一定的编码规则排列,用以表达一组信息的图形标识符。主要用于产品的追踪追溯,生产控制,自动识别,特别是与新兴的RFID技术一起构成“物联网”的硬件系统之一。
一维码:即俗称的“条形码”,在流通的所有商品如超市售出的所有产品上我们都能找到这类标识。
二维码:是一维码的升级版。由于其比一维码能包含更多的信息、更高的可读取率,在越来越多的产品上使用了二维码(比如新版的火车票,工业类产品的塑料外壳上等都有使用二维码)。【服务热线,贴心服务】
关于读码器的信息,可以到研祥金码官网进行深入的了解,作为业界少有且性能强大的工业级读码器的Regem Marr研祥金码坚持做工匠精神的践行者,用引以为傲的严谨与专业,耐心、专心、细心打磨好每一款产品。
机器视觉技术的系统类型
基于机器视觉的仪表板总成智能集成测试系统
EQ140-II汽车仪表板总成是我国某汽车公司生产的仪表产品,仪表板上安装有速度里程表、水温表、汽油表、电流表、信号报警灯等,其生产批量大,出厂前需要进行一次质量终检。检测项目包括:检测速度表等五个仪表指针的指示误差;检测24个信号报警灯和若干照明9灯是否损坏或漏装。一般采用人工目测方法检查,误差大,可靠性差,不能满足自动化生产的需要。基于机器视觉的智能集成测试系统,改变了这种现状,实现了对仪表板总成智能化、全自动、高精度、快速质量检测,克服了人工检测所造成的各种误差,大大提高了检测效率。 整个系统分为四个部分:为仪表板提供模拟信号源的集成化多路标准信号源、具有图像信息反馈定位的双坐标CNC系统、摄像机图像获取系统和主从机平行处理系统。 金属板如大型电力变压器线圈扁平线收音机蒙胧皮等的表面质量都有很高的要求,但原始的采用人工目视或用百分表加控针的检测方法不仅易受主观因素的影响,而且可能会绘被测表面带来新的划伤。金属板表面自动探伤系统利用机器视觉技术对金属表面缺陷进行自动检查,在生产过程中高速、准确地进行检测,同时由于采用非接角式测量,避免了产生新划伤的可能。其工作原理图如图8-6所示;在此系统中,采用激光器作为光源,通过针孔滤波器滤除激光束周围的杂散光,扩束镜和准直镜使激光束变为平行光并以45度的入射角均匀照明被检查的金属板表面。金属板放在检验台上。检验台可在X、Y、Z三个方向上移动,摄像机采用TCD142D型2048线陈CCD,镜头采用普通照相机镜头。CCD接口电路采用单片机系统。主机PC机主要完成图像预处理及缺陷的分类或划痕的深度运算等,并可将检测到的缺陷或划痕图像在显示器上显示。CCD接口电路和PC机之间通过RS-232口进行双向通讯,结合异步A/D转换方式,构成人机交互式的数据采集与处理。
该系统主要利用线阵CCD的自扫描特性与被检查钢板X方向的移动相结合,取得金属板表面的三维图像信息。 英国ROVER汽车公司800系列汽车车身轮廓尺寸精度的100%在线检测,是机器视觉系统用于工业检测中的一个较为典型的例子,该系统由62个测量单元组成,每个测量单元包括一台激光器和一个CCD摄像机,用以检测车身外壳上288个测量点。汽车车身置于测量框架下,通过软件校准车身的精确位置。
测量单元的校准将会影响检测精度,因而受到特别重视。每个激光器/摄像机单元均在离线状态下经过校准。同时还有一个在离线状态下用三坐标测量机校准过的校准装置,可对摄像顶进行在线校准。
检测系统以每40秒检测一个车身的速度,检测三种类型的车身。系统将检测结果与人、从CAD模型中撮出来的合格尺寸相比较,测量精度为±0.1mm。 ROVER的质量检测人员用该系统来判别关键部分的尺寸一致性,如车身整体外型、门、玻璃窗口等。实践证明,该系统是成功的,并将用于ROVER公司其它系统列汽车的车身检测。 来自终端用户的声音——成本的计算要用发展的眼光看待 。
机器视觉技术未能得到广泛应用的原因主要是产品成本过高.还没有形成广泛应用的环境。但是从发展的角度来看.长期积累的人工检测成本也将会与机器视觉设备持平.在高速生产线上匹配机器视觉设备将会是一个比较明显的发展趋势。伴随医药企业逐渐提升档次及逐渐完善.企业对机器视觉技术的需求会越来越普遍。另外.从社会责任感的角度来看.医药行业有越来越多的企业将“患者生命安全的保证”和“企业肩负责任的履行”看作至高无上的使命.这也推动了机器视觉技术在行业内的应用。
来自供应商的声音——责任感、技术发展、政策要求,‘一个都不能少’。
国内的很多制药企业在药品生产中希望把成本压得越低越好,这样。一些相应的检测设备的运用就在一定程度上受到了限制。制药企业对降低生产成本的考虑是制约机器视觉技术在医药行业广泛应用的关键因素。
而另一方面.制药企业的行业特点也决定了对机器视觉技术的迫切需求。如果企业对自身的要求非常高。对产品的质量和社会责任有非常负责任的态度.那么他们也会毫不犹豫的应用机器视觉技术。因为他们知道在哪些地方应该做什么。花哪些钱。
从技术的角度讲.医药包装的检测技术有很多。机器视觉技术并不是唯一的。但是对于一些比较复杂或特定的检测项目。机器视觉技术的确可以给与最安全、最清晰的检测。制药企业在检测设备可以达到同样质量的前提下.可以选择他们认为更适合的设备。但是如果他们因为一些原因放弃质量。选择检测效果不是最好或者不能完全达到检测要求的设备.这就得不偿失了。
分析机器视觉技术与其他检测技术相比的优势
来自终端用户的声音——人工检测、光电检测已不能满足企业的检测需求
经记者采访多家医药生产企业获悉.人工检视在我国制药企业当中应用仍甚为广泛.如新保健药品中国湖州生产基地的生产经理林杰先生以胶囊剂型为例解释了人工检视的工作过程:通常为旋转的胶囊通过传送带带动.经过操作人员并通过人工的视觉检测。这种传统的方式毫无疑问无法规避一些客观的风险.比如人眼的疲劳、误差、高速生产过程中精力的不集中、无法对检测效果量化考评、速度的限制等.而这些不利因素无疑会成为今后医药企业发展的一个瓶颈。包装本身涉及到一个鉴别的问题.通过一些可靠的机器鉴别技术会实现比人工鉴别更加稳定的效果。在此种情况下。机器视觉技术的应运而生。并将嬴来更加广阔的市场。与此同时。在高技术集中的数粒环节中.光电检测设备对成像、数粒的过程也不如机器视觉技术更权威、精确。 ——更全面、可靠的机器视觉技术在未来将取代其他相关检测技术
除了机器视觉技术以外.人工检视、光电技术、称重技术等检测技术也被制药企业所应用。但与其他检测相比.机器视觉技术在检测精度和操作简单性方面都更胜一筹。如:光电技术在调试和设定方面都比较复杂.包装线上的一些细节上稍有变化就会带来检测结果的不准确.例如:位移的变化、震动的出现.因为医药包装线是条高速的包装线.比较复杂.所以这些情况经常会出现。制药企业发现问题后再调试检测设备的设定会比较麻烦。而且如果制药企业没有发现检测中出现的这些问题.那么就可能会有存在包装问题产品投放到市场当中销售.其造成的后果则不可想象。
另外,光电检测的检测项目是很单一的.只能检测一个项目.这就需要在包装线上安装多个光电检测设备。例如:在对瓶装药的包装检测中。瓶子的放置、液位、贴标就需要三个光电检测设备来完成。但是如果采用机器视觉设备就可以一个设备一次检测完成。而且机器视觉设备在应用时.只要在视线范围内的都可以检测.那么一些生产线上出现的移位、震动等问题就不会影响最后的检测效果。
特别值得一提的是.机器视觉设备也非常适合制药企业的包装线上经常改变包装产品的情况.例如:一个制药企业的泡罩包装线上很可能今天生产治疗胃病的相关药品.而第二天会改成生产治疗心脏病的相关药品.这两种药品在检测的内容上肯定会有不同.机器视觉设备可以在软件中保存十几种产品的检测项目.更换产品时只要调出相应的内容即可.而不需要重新调试检测的参数.浪费很多时间。
身为电气工程师的你懂机器视觉吗?为什么它这么厉害?
机器视觉是通过计算机来模拟人类视觉功能,以让机器获得相关视觉信息和加以理解。可分为“视”和“觉”两部分原理。
“视”是将外界信息通过成像来显示成数字信号反馈给计算机,需要依靠一整套的硬件解决方案,包括光源、相机、图像采集卡、视觉传感器等。“觉”则是计算机对数字信号进行处理和分析,主要是软件算法。
机器视觉在工业上应用领域广阔,核心功能包括:测量、检测、识别、定位等。
产业链可以分为上游部件级市场、中游系统集成/整机装备市场和下游应用市场。
机器视觉上游有光源、镜头、工业相机、图像采集卡、图像处理软件等软硬件提供商,中游有集成和整机设备提供商,行业下游应用较广,主要下游市场包括电子制造行业、 汽车 、印刷包装、烟草、农业、医药、纺织和交通等领域。
机器视觉全球市场主要分布在北美、欧洲、日本、中国等地区,根据统计数据,2014年,全球机器视觉系统及部件市场规模是 36.7 亿美元,2015年全球机器视觉系统及部件市场规模是42亿美元,2016年全球机器视觉系统及部件市场规模是62亿美元,2002-2016年市场年均复合增长率为12%左右。而机器视觉系统集成,根据北美市场数据估算,大约是视觉系统及部件市场的6倍。
中国机器视觉起步于80年代的技术引进,随着98年半导体工厂的整线引进,也带入机器视觉系统,06年以前国内机器视觉产品主要集中在外资制造企业,规模都较小,06年开始,工业机器视觉应用的客户群开始扩大到印刷、食品等检测领域,2011年市场开始高速增长,随着人工成本的增加和制造业的升级需求,加上计算机视觉技术的快速发展,越来越多机器视觉方案渗透到各领域,到2016年我国机器视觉市场规模已达近70亿元。
机器视觉中,缺陷检测功能,是机器视觉应用得最多的功能之一,主要检测产品表面的各种信息。在现代工业自动化生产中,连续大批量生产中每个制程都有一定的次品率,单独看虽然比率很小,但相乘后却成为企业难以提高良率的瓶颈,并且在经过完整制程后再剔除次品成本会高很多(例如,如果锡膏印刷工序存在定位偏差,且该问题直到芯片贴装后的在线测试才被发现,那么返修的成本将会是原成本的100倍以上),因此及时检测及次品剔除对质量控制和成本控制是非常重要的,也是制造业进一步升级的重要基石。
1.在检测行业,与人类视觉相比,机器视觉优势明显
1)精确度高:人类视觉是64灰度级,且对微小目标分辨力弱;机器视觉可显著提高灰度级,同时可观测微米级的目标;
2)速度快:人类是无法看清快速运动的目标的,机器快门时间则可达微秒级别;
3)稳定性高:机器视觉解决了人类一个非常严重的问题,不稳定,人工目检是劳动非常枯燥和辛苦的行业,无论你设计怎样的奖惩制度,都会发生比较高的漏检率。但是机器视觉检测设备则没有疲劳问题,没有情绪波动,只要是你在算法中写好的东西,每一次都会认真执行。在质控中大大提升效果可控性。
4)信息的集成与留存:机器视觉获得的信息量是全面且可追溯的,相关信息可以很方便的集成和留存。
2.机器视觉技术近年发展迅速
1)图像采集技术发展迅猛
CCD、CMOS等固件越来越成熟,图像敏感器件尺寸不断缩小,像元数量和数据率不断提高,分辨率和帧率的提升速度可以说日新月异,产品系列也越来越丰富,在增益、快门和信噪比等参数上不断优化,通过核心测试指标(MTF、畸变、信噪比、光源亮度、均匀性、色温、系统成像能力综合评估等)来对光源、镜头和相机进行综合选择,使得很多以前成像上的难点问题得以不断突破。
2)图像处理和模式识别发展迅速
图像处理上,随着图像高精度的边缘信息的提取,很多原本混合在背景噪声中难以直接检测的低对比度瑕疵开始得到分辨。
模式识别上,本身可以看作一个标记过程,在一定量度或观测的基础上,把待识模式划分到各自的模式中去。图像识别中运用得较多的主要是决策理论和结构方法。决策理论方法的基础是决策函数,利用它对模式向量进行分类识别,是以定时描述(如统计纹理)为基础的;结构方法的核心是将物体分解成了模式或模式基元,而不同的物体结构有不同的基元串(或称字符串),通过对未知物体利用给定的模式基元求出编码边界,得到字符串,再根据字符串判断它的属类。在特征生成上,很多新算法不断出现,包括基于小波、小波包、分形的特征,以及独二分量分析;还有关子支持向量机,变形模板匹配,线性以及非线性分类器的设计等都在不断延展。
3)深度学习带来的突破
传统的机器学习在特征提取上主要依靠人来分析和建立逻辑,而深度学习则通过多层感知机模拟大脑工作,构建深度神经网络(如卷积神经网络等)来学习简单特征、建立复杂特征、学习映射并输出,训练过程中所有层级都会被不断优化。在具体的应用上,例如自动ROI区域分割;标点定位(通过防真视觉可灵活检测未知瑕疵);从重噪声图像重检测无法描述或量化的瑕疵如橘皮瑕疵;分辨玻璃盖板检测中的真假瑕疵等。随着越来越多的基于深度学习的机器视觉软件推向市场(包括瑞士的vidi,韩国的SUALAB,香港的应科院等),深度学习给机器视觉的赋能会越来越明显。
4)3d视觉的发展
3D视觉还处于起步阶段,许多应用程序都在使用3D表面重构,包括导航、工业检测、逆向工程、测绘、物体识别、测量与分级等,但精度问题限制了3D视觉在很多场景的应用,目前工程上最先铺开的应用是物流里的标准件体积测量,相信未来这块潜力巨大。
3.要全面替代人工目检,机器视觉还有诸多难点有待攻破
1)光源与成像:机器视觉中优质的成像是第一步,由于不同材料物体表面反光、折射等问题都会影响被测物体特征的提取,因此光源与成像可以说是机器视觉检测要攻克的第一个难关。比如现在玻璃、反光表面的划痕检测等,很多时候问题都卡在不同缺陷的集成成像上。
2)重噪音中低对比度图像中的特征提取:在重噪音环境下,真假瑕疵的鉴别很多时候较难,这也是很多场景始终存在一定误检率的原因,但这块通过成像和边缘特征提取的快速发展,已经在不断取得各种突破。
3)对非预期缺陷的识别:在应用中,往往是给定一些具体的缺陷模式,使用机器视觉来识别它们到底有没有发生。但经常遇到的情况是,许多明显的缺陷,因为之前没有发生过,或者发生的模式过分多样,而被漏检。如果换做是人,虽然在操作流程文件中没让他去检测这个缺陷,但是他会注意到,从而有较大几率抓住它,而机器视觉在这点上的“智慧”目前还较难突破。
4.机器视觉产业链情况
1)上游部件级市场
主要包括光源、镜头、工业相机、图像采集卡、图像处理软件等提供商,近几年智能相机、工业相机、光源和板卡都保持了不低于20%的增速。根据中国机器视觉产业联盟(CMVU)调查统计,现在已进入中国的国际机器视觉品牌已近200多家(如康耐视、达尔萨、堡盟等为代表的核心部件制造商,以思奥特 、欧姆龙、松下、邦纳、NI等为代表的则同时涉足机器视觉核心部件和系统集成),中国自有的机器视觉品牌也已有100多家(如思奥特 、华睿、盟拓光电、神州视觉、深圳灿锐、上海方诚、上海波创电气等),机器视觉各类产品代理商超过300家(如深圳鸿富视觉、微视新纪元、三宝兴业、凌云光、阳光视觉等)。很多国内机器视觉的部件市场都是从代理国外品牌开始,很多企业均与国外的同行有较好的合作,且这种合作具有一定的排他性,这给潜在进入者带来了一定的门槛,因此优质产品的代理商也都有不错的市场竞争力和利润表现。同时,以思奥特 、华睿为代表的国产工业视觉核心部件正在快速崛起。
2)中游系统集成和整机装备市场
国内中游的系统集成和整机装备商有100多家,他们可以给各行业自动化公司提供综合的机器视觉方案,如凌云光、微视新纪元、嘉恒、凌华、阳光视觉、鼎信、大恒图像等。由于国内产品与国际依然有不小差距,很多中游系统集成商和整机装备商又是从核心零部件的贸易做起来的,因此很多在视觉产品的选择方面,依然更为青睐国外品牌。国内品牌为推广自己的软硬件产品,往往需要发展自己的方案集成能力,才能更好的面对市场竞争。
3)下游应用市场
机器视觉下游,主要是给终端用户提供非标自动化综合解决方案的公司,行业属性非常强,核心竞争力是对行业和生产的综合理解和多类技术整合。由于行业自动化的更迭有一定周期性,深受行业整体升级速度、出货量和利润状况影响,因此近两年来看,拉动机器视觉应用普及最主要的还是在电子制造业,其次是 汽车 和制药。
i. 半导体和电子生产行业:从国内机器视觉工业上的应用分布来看,46%都集中在电子及半导体制造行业,包括晶圆加工制造的分类切割、PCB检测(底片、内/外层板、成品外观终检等)、SMT贴装检测、LCD全流程的AOI缺陷检测、各种3c组件的表面缺陷检测、3c产品外观检测等
ii. 汽车 :车身装配检测、零件的几何尺寸和误差测量、表面和内部缺陷检测、间隙检测等
iii. 印刷、包装检测:烟草外壳印刷、食品的包装和印刷、药品的铝塑板包装和印刷等
iv. 农业:对农产品的分级、检验和分类
v. 纺织:对异纤、云织、经疵、纬疵等瑕疵检测、织物表面绒毛鉴定、纱线结构分析等等。
5.机器视觉系统未来发展趋势
1)嵌入式解决方案发展迅猛,智能相机性能与成本优势突出,嵌入式PC会越来越强大
2)模块化的通用型软件平台和人工智能软件平台将降低开发人员技术要求和缩短开发周期
3)3d视觉将走向更多应用场景
光纤灯照明
回复;分辨玻璃盖板检测中的真假瑕疵等。随着越来越多的基于深度学习的机器视觉软件推向市场(包括瑞士的vidi,韩国的SUALAB,香港的应科院等),深度学习给机器视觉的赋能会越来越明显。 4)3d视觉